# analysis/core.py
from typing import Dict, Any, Optional
def analyze_dataset(context, prepared_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze a prepared dataset.
Args:
context: Agent execution context
prepared_data: Preprocessed dataset information
Returns:
Dictionary containing analysis results or error information
"""
try:
query = context.parameters.get("query", "")
# Perform analysis
insights = generate_insights(prepared_data, query)
confidence = calculate_confidence(insights, prepared_data)
return {
"success": True,
"query": query,
"insights": insights,
"confidence": confidence,
"metadata": {
"rows_analyzed": prepared_data.get("row_count", 0),
"analysis_type": "standard"
}
}
except Exception as e:
return {
"success": False,
"error": str(e),
"error_type": type(e).__name__
}
def generate_insights(data: Dict[str, Any], query: str) -> list:
"""Generate insights from data based on query."""
# Implementation here
return ["insight1", "insight2"]
def calculate_confidence(insights: list, data: Dict[str, Any]) -> float:
"""Calculate confidence score for insights."""
# Implementation here
return 0.85